1. The length of a rectangle is 1 foot less than 3 times the width. The area is $310 \mathrm{ft}^{2}$. Find the dimensions of the rectangle.

Step 1: Identify your variables and write an equation to help you solve this problem.
$L=30 s-1$
$L=A \sin$ 青
$u s=x+t \mid n$
$L u==10$

Step 2: Solve the equation. Be sure to state all solutions to the equation.

$$
\begin{array}{ccc}
L u=310 & 3-30 & w+10=0 \\
(3 \omega-1) u=310 & \omega=0 & w=10 \\
3 \omega+0-310-0 & w=3 / 5 & \\
(3 \omega-31)(\omega+10)=0 & =10 / 3
\end{array}
$$

Step 3: Interpret the solution and answer the initial question.
The rectangle is $10 \frac{1}{3} \mathrm{ft} 30 \mathrm{ft}$.
2. The profit earned by an electronics company for selling printers is modeled by the function $P=-3 x^{2}+33 x-72$, where x is the number of printers in hundreds, and P is measured in thousands of dollars. What two numbers of printers sold will result in zero profit?

Step 2: Solve the equation. Be sure to state all solutions to the equation.

$$
\begin{aligned}
& 0=-3 x^{2}+33 x-72 \\
& 0=-=\left(x^{2}-11 x+24\right) \\
& 0=-3(x-8)(x-3) \\
& x=8,3
\end{aligned}
$$

Step 3: Interpret the solution and answer the initial question.

3. The height of a right triangle is 8 inches less than the length of its base. The area of the triangle is 90 square inches. What is the height and base of the triangle?

Step 1: Identify your variables and write an equation to help you solve this problem.

$$
x=\text { length ob lase } \frac{1}{2} x(x-8)=90
$$

Step 2: Solve the equation. Be sure to state all solutions to the equation.

$$
\begin{array}{rl}
\frac{1}{2} x^{2}-4 x=90 & x-4 \\
x^{2}-8 x= \pm 14 \\
x^{2}-8 x+16=180+16 & x=4 \pm 14 \\
1(x-4)^{2}=196 & x
\end{array}
$$

Step 3: Interpret the solution and answer the initial question.

$$
\begin{aligned}
& \text { The bose of the } \Delta \text { is } 18 \text { in the height } \\
& \text { is } 10 \mathrm{in} \text {. }
\end{aligned}
$$

4. A golf ball is hit from a hill, and its height can be modeled by $h=-16 t^{2}+$ $32 t+48$, where h is height in feet and t is time in seconds. How long is the ball in the air? whom will n we 0 ?
Step 2: Solve the equation. Be sure to state all solutions to the equation.

$$
\begin{aligned}
& 0=-16 t^{2}+32 t+48 \\
& 0=-16\left(t^{2}-2 t-3\right) \\
& 0=-16(t-3)(t+1) \\
& t=3,-1
\end{aligned}
$$

Step 3: Interpret the solution and answer the initial question.

\square
\square
5. A rectangular swimming pool is 50 meters long and 25 meters wide. A concrete walkway with a width of x meters will surround the pool. The combined area of the pool and the walkway will be 1736 square meters. Solve the equation $(50+2 x)(25+2 x)=1736$ to find the width of the walkway. Justify that your answer is reasonable.

Step 2: Solve the equation. Be sure to state all solutions to the equation.

$$
\begin{aligned}
& (56+2 x)(25+2 x)=1736 \\
& 1250+100 x+50 x+4 x=1736
\end{aligned}
$$

$4 x^{2}+150 x-486=0 \quad x=$
$2\left(2 x^{2} \cdot 75 x-243\right)=0$
$2 x^{2}+75 x-243=0$

Step 3: Interpret the solution and answer the initial question.

$$
x=-75=\sqrt{7569}
$$

the wathurey is 3 meters wide

$$
\begin{aligned}
& \frac{x=\frac{75 \pm 87}{4}}{x=12 / 4=3} \\
& x-94 / 4=-231 / 2
\end{aligned}
$$

6. A baseball player hits a ball from a height of 5 feet with an initial vertical velocity of 54 feet per second. The function $h=-16 t^{2}+54 t+5$ models the height h in feet of the ball t seconds after it is hit. Will the ball reach a height of 50 feet? Justify your answer.

Step 3: Interpret the solution and answer the initial question.
 asper 1.8750

